# STEREO Guidance & Control

J. Courtney Ray

J. C. Ray@j huapl . edu

### STEREO G&C

- Requirements
- Baseline System
- Software
- Some Analysis

#### G&C Requirements - Drivers

• Spacecraft pointing -  $(3 \sigma)$ 

```
Roll Pitch/Yaw

- Knowledge: \pm 20 arcsec \pm 0.1 arcsec

- Control: \pm 0.1 degree \pm 20 arcsec

- Jitter: 30 arcsec RMS 1.5 arcsec (0.1 to TBD Hz) (with SCIP error signal, which is \pm 0.1 arcsec)
```

- Jitter is challenge
- Need high control bandwidth =>
  - High wheel torque
  - Fast sampling rate
  - Minimize disturbances
  - Modern control techniques

#### Interesting G&C Requirements

- Point LOS within 5 arcmin of sun for SCIP acquisition
  - Requires good coalignment
- Nominal HGA pointing to 0.1°; Maintain HGA pointing during thrusting; Complete autonomous thruster firings within 300 seconds
  - Sets gimbal step frequency
  - Need small impulse bit & small  $\Delta t$
  - In-flight HGA alignment cal?
- Momentum storage capacity > 4 days in operational mode
  - Sizes wheel momentum
- Return from any attitude in < 12 minutes
  - Thruster attitude control?
  - May size wheel torque
- On-board orbit propagation for pointing HGA at Earth distance > 1e6 km
  - Autonomous navigation ?
- Solar pressure momentum bias within sun-angle limit
  - Solar c.p. trim?

### STEREO Guidance & Control System



# Baseline G&C Equipment

| Item            | Heritage | Performance                               |  |  |
|-----------------|----------|-------------------------------------------|--|--|
|                 |          |                                           |  |  |
| IMU             | NEAR     | HRG, 0.01 deg/hr <sup>1/2</sup>           |  |  |
| Star tracker    | TIMED    | 3 arc sec, 7.5 Mv stars                   |  |  |
| Reaction Wheels | NEAR     | Torque: 0.025 Nm<br>Momentum: 4 Nms       |  |  |
| Sun Sensors     | NEAR     | 0.5 deg quantization<br>0.25 deg accuracy |  |  |
| AIU             | TIMED    | No                                        |  |  |
| Flight Computer | TIMED    | Yes                                       |  |  |

#### Inertial Measurement Unit (IMU)

- Supplier: Delco Electronics
- Gyros:
  - Delco 130Y Hemispherical Resonator Gyros (HRG)
  - Rate bias stability < 0.001 deg/hr, over 16 hr
  - $ARW < 0.01 deg/hr^{1/2}$
- Redundancy:
  - NEAR: redundant CPU, power; 4 gyros
  - Cassini: single-string
- Projected  $P_s$  (system function) = 0.9996 for mission life
  - (4 gyro IMU)

#### Star Tracker

- Supplier: Lockheed Martin
- Accuracy:
  - 3 arcsec P/Y; 32 arcsec R (1 $\sigma$ )
  - 7.5 Mv stars
  - 8.8° square FOV
- Quaternion output
  - Autonomous star ID within ~2 sec
  - 5 Hz update, 1553 interface
- Flown on DS1, P59; to fly on TIMED, EO1, MAP, IMAGE, ...

#### Reaction Wheel Assembly (RWA)

- Supplier: Ithaco, Inc. (Type A)
- Characteristics:
  - Brushless DC motor
  - Bipolar tachometer
  - Separate electronics, stacked to save weight & space
- Performance:
  - Angular Momentum: 4 Nms (@ 5100 RPM)
  - Torque: 0.025 Nm
  - Unbalance:

static < 1.5 gm cmdynamic  $< 40 \text{ gm cm}^2$ 

- Torque noise PSD:  $1 \times 10^{-11} \text{ (Nm)}^2/\text{Hz}, 0.1 \text{ to } 1 \text{ Hz}$ 

Continuous operating life: > 4 years

#### Sun Sensors (DSAD)

- Supplier: Adcole
- Digital Solar Attitude Detector (DSAD) system
  - 5 detector heads, each measures 2-axis sun vector in  $\pm 64^{\circ}$  FOV
- Accuracy:
  - 0.5 deg quantization
  - 0.25 deg bit transition-angle accuracy
- Flight proven, many times

#### Guidance & Control

#### Functional Block Diagram



#### **G&C** Software

- G&C software will be developed in Simulink
  - Graphical tool for developing system models
  - Runs in Matlab
  - Used on TIMED
- Real-Time Workshop (RTW) used to automatically generate code:
  - Testbed simulator
  - FC
  - AIU?
- System-level modules (e.g. Cmd, TLM, device handlers) may need to be hand-coded

## Simulink Model Top Level

| Title: /d0026/project/stereo/jcr/mdl1.eps Creator: MATLAB, The Mathworks, Inc. Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PostScript printer, but not to                                                                                                                                                                  |  |  |
| other types of printers.                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                 |  |  |

# Simulink Model Dynamics

| Title: /d0026/project/stereo/jcr/mdl2.eps Creator: MATLAB, The Mathworks, Inc. Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers. |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                                                                                                                                                                                         |  |  |  |

#### Control Bandwidth (BW) Effects





# Limit Cycling



- $\Delta H$  is torque impulse bit, I = inertia
- For  $\Delta H = 0.02$ ,  $\alpha = 0.02$ , I=300 (SI units):

$$Dq = \sim 4 \, \mu \text{rad}, t = 1$$

#### Momentum Bias Mode

- Possible for safe mode, or if y or z wheel fails -
  - x wheel runs at large fraction of its max speed
  - Other wheel(s) used to damp nutation
  - Precession by thruster firings
- Degraded pointing accuracy -
  - Stability dominated by nutation
  - Accuracy limited by momentum precession
- Fuel for angular momentum precession:
  - About 150 mgm/day for 1 deg/day precession (H=4 Nms, Isp=65 s)
- If x wheel fails -
  - y & z RW control still possible
  - 2-sided thruster limit cycle for x

### **Redundancy Considerations**

- Four Wheels
  - Full capability if any one fails
  - Enable wheel speed control to avoid troublesome frequencies
- Four Gyros
  - Full capability if any one fails
  - Lower noise if all four used
- Fine Sun Sensor
  - In addition to, or in place of, coarse DSADs
  - Enable mission pointing without LOS error signal